
CASE STUDY:
Mitchell International

“PostSharp was especially good when we needed to transfer data
between applications. We would have had to write a lot of code if not for
PostSharp and now we don’t even think about it. It made life a lot easier
now from a development point of view.”

Kshitij Deshmukh Rensfield
Software Development Manager
Mitchell International

2

Summary
When the team at Mitchell International was asked to deliver a new suite
of client-facing applications, one of its greatest challenges was to keep
code repetition to a minimum. After evaluating a number of solutions, the
development team at Mitchell chose PostSharp to deliver a significant
decrease in boilerplate code and software defects – saving them from
having to write tens of thousands of lines of code.

Engineers to deliver a new suite of client-facing
software
As North America’s leading provider of property & casualty claims
management solutions, Mitchell International processes more than 50
million transactions annually for over 300 insurance companies and
claims payers, and over 30,000 car collision repair shops.

The development team at Mitchell was tasked with delivering a new
suite of client-facing software packages to:

1. simplify the company’s claims management processes; and

2. accelerate the company’s collision repair processes.

The new suite of applications, to be developed using the latest .NET
technologies, had to be combined with disparate applications that have
been in the marketplace for many years. This integration added a lot of
complexity to the project.

Integration requires a lot of repetitive code
At the start of the project the development manager and principal
engineer assessed Mitchell’s existing client-facing software and
discovered a mix of old Windows-based applications written in a variety
of different technologies. “Visual C++, Visual Basic and WinForms just to
name a few,” says Kshitij Deshmukh, Mitchell’s Software Development
Manager.

Mitchell International
North America’s leading provider of property & casualty

claims management solutions saves from having to
write tens of thousands of lines of code with PostSharp.

3

The biggest challenge involved a huge C++ application that served as the
main engine and revenue generator for their business:

• the application was 20 year old; and

• almost 2 million lines of code.

Rather than confront the daunting task of rewriting the application from
the ground up, the team chose to break it into smaller components and
tackle each of them separately. Continuing to use the C++ application as
the main engine, the team set about rewriting all of its peripheral pieces
one-by-one using .NET 4.0 and Windows Presentation Foundation as part
of the new suite, visually embedding the old application in the center of
the new one.

 “As part of that process, we found that some of the existing patterns had
a lot of repetition in them,” says Kshitij, “especially in MVVM where you
have to bind to all of the controls in XAML. There was a lot of code that
you had to just continually keep writing all the time.”

Why Mitchell chose PostSharp
The senior team began looking into run-time solutions to handle
repetitive code. “We tried Spring.NET and CastleWindsor,” says Kshitij, “but
we soon discovered that there was a lot of run-time expense to incur
with these frameworks. That’s when we started looking at compile-time
solutions.”

Having previously tried PostSharp years earlier, Kshitij and his team
evaluated version 2.1 and gave it high marks for:

• Visual Studio and MSBuild integration;

• high run-time performance;

• compile-time performance improvements over earlier versions.

Having chosen PostSharp to handle repetitive code in their new suite of
software, it was now up to Tony Rensfield, Principal Engineer at Mitchell,
to determine how to best implement the framework into the project.

“In the beginning of project, Kshitij and I were both writing code and
did a lot of the up-front work for many of the aspects that we needed,
including some small proof of concepts and their implementations,” says
Tony. The proof of concepts served as templates for developers coming
in to the project so that, after just a few questions, they could understand
how the aspects were applied and go about their day-to-day work of
rewriting the peripherals.

“PostSharp was
especially good when we
needed to transfer data
between applications. We
would have had to write
a lot of code if not for
PostSharp and now we
don’t even think about it.
It made life a lot easier
now from a development
point of view.”

Kshitij Deshmukh
Software Development
Manager
Mitchell International

4

Build and inject custom aspects into applications
Additionally to a few standard aspects, the team built several aspects to
facilitate integration between the new and the old application:

• Activity Logging

• Exception Handling

• Performance Counter

• Thread Dispatching

• Data Sync

Thread Dispatching – A custom aspect was built for pushing threads and
calls back onto the GUI thread. “We have events that come from the old
application and the new application, and they talk back and forth.” says
Tony. “Depending upon when and on what thread those events come in,
you might end up making calls that need to be pushed back up to the GUI
thread. We have an aspect for that, so if you have a method that might
need that, you basically apply that aspect, and it keeps you from having to
write all the code to invoke or push it back to the dispatcher.”

Activity Logging Aspect – A subset of logging, this custom aspect was
built and applied to very specific methods so, when a milestone step is
taken in the new application, the team is notified and has the option
to push the logs up to their servers or display specific information or
instructions to the end user.

Data Sync Aspect – A custom aspect was built to assure the applications
stay synchronized with each other. “Approximately 30% of properties in
the new applications are exact replications of the properties that exist in
the old application”, says Tony, “so we wrap these properties in an aspect
that basically transfers the changes to the other application through an
API. As the user is changing those properties live, these changes get
transferred so that the two applications stay synchronized.”

“The fact that none of
our 18 developers have
ever had to write an
exception handler or
even one logging line
in this project is a huge
win for us. Using aspects
prevents a lot of user
error and in that way
PostSharp has been
amazing for us.”

Anthony Rensfield
Principal Engineer
Mitchell International

5

SharpCrafters s.r.o.
Namesti 14 rijna, 1307/2
150 00 Prague 5
Czech Republic

US: +1 866 576 5361

CZ: +420 270 007 790

www.postsharp.net

info@postsharp.net

PostSharp reduces tens of thousands
of lines of code
The team at Mitchell is pleased with the results from using PostSharp:

• reduced boilerplate code

• code is more readable

• code is easier to maintain

“It has reduced thousands of lines of code,” says Kshitij. “You apply an
aspect and it takes care of everything without having to mess around
with each and every property or method. Now we can just look at
business logic without actually having to worry about all the rest of the
bookkeeping that needs to happen around it.”

Kshitij and Tony are also pleased with how PostSharp makes enforcing
good architecture practices easy. “You enforce a certain methodology so
that you don’t get team members doing things they’re not supposed to
and doing so helps to clean up everything and keep it that way.” says Tony.
“PostSharp has saved us from writing so many lines of code that it’s hard
to even quantify. The fact that none of our developers have ever had to
write an exception handler or even one logging line in this project is a
huge win for us. Using aspects prevents a lot of user error and in that way
PostSharp has been amazing for us.”

